Algorithms for Cox rings

Simon Keicher

ICERM
May 2018

Cox rings

The Cox ring of a normal projective variety X is the $\mathrm{Cl}(X)$-graded \mathbb{C}-algebra

$$
\operatorname{Cox}(X):=\bigoplus_{\operatorname{Cl}(X)} \Gamma(X, \mathcal{O}(D)) .
$$

Cox rings

The Cox ring of a normal projective variety X is the $\mathrm{Cl}(X)$-graded \mathbb{C}-algebra

$$
\operatorname{Cox}(X):=\bigoplus_{\mathrm{Cl}(X)} \Gamma(X, \mathcal{O}(D))
$$

Example

(1) For $X=\mathbb{P}_{2}$ we have $\operatorname{Cl}\left(\mathbb{P}_{2}\right)=\mathbb{Z}$ and

$$
\operatorname{Cox}\left(\mathbb{P}_{2}\right)=\mathbb{C}\left[T_{1}, T_{2}, T_{3}\right], \quad \operatorname{deg}\left(T_{i}\right)=1 \in \mathbb{Z}
$$

Cox rings

The Cox ring of a normal projective variety X is the $\mathrm{Cl}(X)$-graded \mathbb{C}-algebra

$$
\operatorname{Cox}(X):=\bigoplus_{\operatorname{Cl}(X)} \Gamma(X, \mathcal{O}(D))
$$

Example

(1) For $X=\mathbb{P}_{2}$ we have $\mathrm{Cl}\left(\mathbb{P}_{2}\right)=\mathbb{Z}$ and

$$
\operatorname{Cox}\left(\mathbb{P}_{2}\right)=\mathbb{C}\left[T_{1}, T_{2}, T_{3}\right], \quad \operatorname{deg}\left(T_{i}\right)=1 \in \mathbb{Z}
$$

(2) For $X=\operatorname{ToricVariety}(\Sigma)$ then

$$
\begin{aligned}
& \operatorname{Cox}(X)=\mathbb{C}\left[T_{\varrho} ; \varrho \in \operatorname{rays}(\Sigma)\right], \\
& \text { with } \operatorname{deg}\left(T_{\varrho}\right)=\left[D_{\varrho}\right] \in \operatorname{Cl}(X)
\end{aligned}
$$

Cox rings

The Cox ring of a normal projective variety X is the $\mathrm{Cl}(X)$-graded \mathbb{C}-algebra

$$
\operatorname{Cox}(X):=\bigoplus_{\operatorname{Cl}(X)} \Gamma(X, \mathcal{O}(D))
$$

Example

(1) For $X=\mathbb{P}_{2}$ we have $\mathrm{Cl}\left(\mathbb{P}_{2}\right)=\mathbb{Z}$ and

$$
\operatorname{Cox}\left(\mathbb{P}_{2}\right)=\mathbb{C}\left[T_{1}, T_{2}, T_{3}\right], \quad \operatorname{deg}\left(T_{i}\right)=1 \in \mathbb{Z}
$$

(2) For $X=\operatorname{ToricVariety}(\Sigma)$ then

$$
\begin{aligned}
& \operatorname{Cox}(X)=\mathbb{C}\left[T_{\varrho} ; \varrho \in \operatorname{rays}(\Sigma)\right], \\
& \text { with } \operatorname{deg}\left(T_{\varrho}\right)=\left[D_{\varrho}\right] \in \operatorname{Cl}(X)
\end{aligned}
$$

Cox rings

The Cox ring of a normal projective variety X is the $\mathrm{Cl}(X)$-graded \mathbb{C}-algebra

$$
\operatorname{Cox}(X):=\bigoplus_{\mathrm{Cl}(X)} \Gamma(X, \mathcal{O}(D))
$$

Example

(1) For $X=\mathbb{P}_{2}$ we have $\operatorname{Cl}\left(\mathbb{P}_{2}\right)=\mathbb{Z}$ and

$$
\operatorname{Cox}\left(\mathbb{P}_{2}\right)=\mathbb{C}\left[T_{1}, T_{2}, T_{3}\right], \quad \operatorname{deg}\left(T_{i}\right)=1 \in \mathbb{Z}
$$

(2) For $X=\operatorname{ToricVariety}(\Sigma)$ then

$$
\begin{aligned}
& \operatorname{Cox}(X)=\mathbb{C}\left[T_{\varrho} ; \varrho \in \operatorname{rays}(\Sigma)\right], \\
& \text { with } \operatorname{deg}\left(T_{\varrho}\right)=\left[D_{\varrho}\right] \in \operatorname{Cl}(X)
\end{aligned}
$$

Features: significant invariant, $\mathrm{Cl}(X)$-factorial.

Mori dream spaces

We call X a Mori dream space (Hu/Keel, 2000) if $\mathrm{Cl}(X)$ and $\operatorname{Cox}(X)$ are finitely generated.

Mori dream spaces

We call X a Mori dream space (Hu/Keel, 2000) if $\mathrm{Cl}(X)$ and $\operatorname{Cox}(X)$ are finitely generated.

Global coordinates:

$$
\begin{aligned}
\mathbb{C}^{r} \supseteq \bar{X}:=\operatorname{Spec}(\operatorname{Cox}(X)) \supseteq & \widehat{X} \\
& \underset{X}{ } / / H:=\operatorname{Spec} \mathbb{C}[\operatorname{Cl}(X)]
\end{aligned}
$$

Mori dream spaces

We call X a Mori dream space (Hu/Keel, 2000) if $\mathrm{Cl}(X)$ and $\operatorname{Cox}(X)$ are finitely generated.

Global coordinates:

$$
\mathbb{C}^{r} \supseteq \bar{X}:=\operatorname{Spec}(\operatorname{Cox}(X)) \supseteq \underset{X}{\underset{X}{ }} \underset{ }{\substack{ \\X}} H:=\operatorname{Spec} \mathbb{C}[\operatorname{Cl}(X)]
$$

Example
The class of Mori dream spaces comprises

- toric varieties, spherical varieties,
- rational complexity-one T-varieties,
- smooth Fano varieties,
- general hypersurfaces in $\mathbb{P}_{n}, n \geq 4$.

Mori dream spaces: combinatorial description

Explicit description (Berchtold/Hausen)

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { Mori dream } \\
\text { spaces }
\end{array}\right\} & \longleftrightarrow\left\{\begin{array}{c}
\text { factorially } K \text {-graded } \\
\text { algebras } R \text { with a } \\
\text { vector in } \operatorname{Mov}(R)
\end{array}\right\} \\
X & \mapsto(\operatorname{Cox}(X), \mathrm{Cl}(X) \text {, ample class })
\end{aligned}
$$

Mori dream spaces: combinatorial description

Explicit description (Berchtold/Hausen)

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { Mori dream } \\
\text { spaces }
\end{array}\right\} & \longleftrightarrow\left\{\begin{array}{c}
\text { factorially } K \text {-graded } \\
\text { algebras } R \text { with a } \\
\text { vector in } \operatorname{Mov}(R)
\end{array}\right\} \\
X & \mapsto(\operatorname{Cox}(X), \operatorname{Cl}(X), \text { ample class }) \\
(\operatorname{Spec} R)^{\mathrm{ss}}(w) / / \operatorname{Spec} \mathbb{C}[K] & \leftrightarrow(R, K, w)
\end{aligned}
$$

Remark:

- the vector w fixes a GIT-cone,
- this allows a treatment of Mori dream spaces in terms of commutative algebra and polyhedral combinatorics.

Mori dream spaces: combinatorics

Example (toric varieties)
Fix a f.g. abelian group K and a K-grading on $R:=\mathbb{C}\left[T_{1}, \ldots, T_{r}\right]$.

Mori dream spaces: combinatorics

Example (toric varieties)

Fix a f.g. abelian group K and a K-grading on $R:=\mathbb{C}\left[T_{1}, \ldots, T_{r}\right]$. Each

$$
(R, K, w), \quad w \in \operatorname{Mov}(R)=\bigcap_{i=1}^{r} \operatorname{cone}\left(\operatorname{deg} T_{j} ; j \neq i\right)
$$

gives a toric variety X with $\operatorname{Cox}(X)=R$ and $\operatorname{Cl}(X)=K$.

Mori dream spaces: combinatorics

Example (toric varieties)

Fix a f.g. abelian group K and a K-grading on $R:=\mathbb{C}\left[T_{1}, \ldots, T_{r}\right]$. Each

$$
(R, K, w), \quad w \in \operatorname{Mov}(R)=\bigcap_{i=1}^{r} \operatorname{cone}\left(\operatorname{deg} T_{j} ; j \neq i\right)
$$

gives a toric variety X with $\operatorname{Cox}(X)=R$ and $\operatorname{Cl}(X)=K$.
Fan Σ_{X} of X :

Mori dream spaces: combinatorics

Example (toric varieties)

Fix a f.g. abelian group K and a K-grading on $R:=\mathbb{C}\left[T_{1}, \ldots, T_{r}\right]$. Each

$$
(R, K, w), \quad w \in \operatorname{Mov}(R)=\bigcap_{i=1}^{r} \operatorname{cone}\left(\operatorname{deg} T_{j} ; j \neq i\right)
$$

gives a toric variety X with $\operatorname{Cox}(X)=R$ and $\mathrm{Cl}(X)=K$.
Fan Σ_{X} of X :

Then Σ_{X} is the normalfan over the fiber polytope

$$
B_{w}:=Q^{-1}(w) \cap \mathbb{Q}_{\geq 0}^{r}-w^{\prime} \subseteq \operatorname{ker}(Q) \cong M_{\mathbb{Q}} .
$$

Mori Dream Spaces: computational approach

Mori Dream Spaces: computer algebra approach

Aim

Let X be a Mori dream space.
(1) Given $(\operatorname{Cox}(X), \operatorname{Cl}(X), w)$, explore the geometry of X computationally.

Mori Dream Spaces: computer algebra approach

Aim

Let X be a Mori dream space.
(1) Given $(\operatorname{Cox}(X), \mathrm{Cl}(X), w)$, explore the geometry of X computationally.
(2) Given X, compute its defining data $(\operatorname{Cox}(X), \mathrm{Cl}(X), w)$.

MDSpackage

Basic algorithms for Mori dream spaces implemented in MDSpackage (for Maple, with Hausen, LMS J. Comput. Math.).

MDSpackage: basic algorithms

For general Mori dream spaces:

- Basics on K-graded algebras,
- Picard group, cones of divisor classes,
- canonical toric ambient variety,
- singularities,
- test for being factorial, ...

MDSpackage: basic algorithms

For general Mori dream spaces:

- Basics on K-graded algebras,
- Picard group, cones of divisor classes,
- canonical toric ambient variety,
- singularities,
- test for being factorial, ...

For complete intersections:

- intersection numbers,
- test for being Fano, Gorenstein, ...

MDSpackage: basic algorithms

For general Mori dream spaces:

- Basics on K-graded algebras,
- Picard group, cones of divisor classes,
- canonical toric ambient variety,
- singularities,
- test for being factorial, ...

For complete intersections:

- intersection numbers,
- test for being Fano, Gorenstein, ...

For complexity-one T-varieties:

- roots of the automorphism group,
- test for being (ε-log) terminal, ...

MDSpackage: examples

Example (Data fixing a Mori dream space)
(1) Define the Cox ring

$$
\operatorname{Cox}(X):=\mathbb{C}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}\right\rangle
$$

MDSpackage: examples

Example (Data fixing a Mori dream space)
(1) Define the Cox ring

$$
\operatorname{Cox}(X):=\mathbb{C}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}\right\rangle
$$

MDSpackage: examples

Example (Data fixing a Mori dream space)
(1) Define the Cox ring

$$
\operatorname{Cox}(X):=\mathbb{C}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}\right\rangle
$$

(2) the class group $\mathrm{Cl}(X):=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and the free part of an ample class $w:=(0,0,1) \in \mathbb{Q}^{3}$.

MDSpackage: examples

Example (Data fixing a Mori dream space)
(1) Define the Cox ring

$$
\operatorname{Cox}(X):=\mathbb{C}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}\right\rangle
$$

(2) the class group $\mathrm{Cl}(X):=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and the free part of an ample class $w:=(0,0,1) \in \mathbb{Q}^{3}$.

MDSpackage: examples

Example (Data fixing a Mori dream space)
(1) Define the Cox ring

$$
\operatorname{Cox}(X):=\mathbb{C}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}\right\rangle
$$

(2) the class group $\mathrm{Cl}(X):=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and the free part of an ample class $w:=(0,0,1) \in \mathbb{Q}^{3}$.
(3) Set $q_{i}:=\operatorname{deg}\left(T_{i}\right)$. Let the degree map be

$$
\begin{gathered}
Q \\
{\left[\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\overline{1} & \overline{0} & \overline{1} & \overline{0} & \overline{1} & \overline{0} & \overline{1} & \overline{0}
\end{array}\right] .}
\end{gathered}
$$

MDSpackage: examples

$$
q_{i}:=\operatorname{deg}\left(T_{i}\right)
$$

MDSpackage: examples

Example (continued)

After having entered X in MDSpackage:
> MDSpic(X);

$$
A G(3,[])
$$

> MDSsample(X);
$\operatorname{CONE}(3,3,0,8,8)$
> MDSisfano(X);
true

$$
q_{i}:=\operatorname{deg}\left(T_{i}\right)
$$

Computing the Mori chamber decomposition

We compute the Mori chamber decomposition of the Mori dream space X from before with $\mathrm{Cl}(X)=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and

$$
\begin{aligned}
& \operatorname{Cox}(X)=\mathbb{C}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}\right\rangle, \\
& Q=\left[\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\
\frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0}
\end{array}\right] \text {. } \\
& q_{8} \quad q_{5} \quad q_{4}
\end{aligned}
$$

Computing the Mori chamber decomposition

We compute the Mori chamber decomposition of the Mori dream space X from before with $\mathrm{Cl}(X)=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and

$$
\begin{aligned}
& \operatorname{Cox}(X)=\mathbb{C}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}\right\rangle, \\
& Q=\left[\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\
\frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0}
\end{array}\right] \text {. } \\
& q_{8} \quad q_{5} \quad q_{4}
\end{aligned}
$$

Computing the Mori chamber decomposition

We compute the Mori chamber decomposition of the Mori dream space X from before with $\mathrm{Cl}(X)=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and

$$
\begin{aligned}
& \operatorname{Cox}(X)=\mathbb{C}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}\right\rangle, \\
& Q=\left[\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\
\frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0}
\end{array}\right] \text {. } \\
& q_{8} \quad q_{5} \quad q_{4}
\end{aligned}
$$

Computing the Mori chamber decomposition

We compute the Mori chamber decomposition of the Mori dream space X from before with $\mathrm{Cl}(X)=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and

$$
\begin{aligned}
& \operatorname{Cox}(X)=\mathbb{C}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}\right\rangle, \\
& Q=\left[\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\
\frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0}
\end{array}\right] \text {. } \\
& q_{8} \quad q_{5} \quad q_{4}
\end{aligned}
$$

Computing the Mori chamber decomposition

We compute the Mori chamber decomposition of the Mori dream space X from before with $\mathrm{Cl}(X)=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and

$$
\begin{aligned}
& \operatorname{Cox}(X)= \mathbb{C}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}\right\rangle \\
& Q=\left[\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\
\frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0}
\end{array}\right] . \\
& q_{8} q_{5} \\
& \bullet q_{6} \\
& \bullet \bullet
\end{aligned}
$$

Computing the Mori chamber decomposition

We compute the Mori chamber decomposition of the Mori dream space X from before with $\mathrm{Cl}(X)=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and

$$
\begin{aligned}
& \operatorname{Cox}(X)=\mathbb{C}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}\right\rangle, \\
& Q=\left[\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\
\frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0}
\end{array}\right] \text {. } \\
& q_{8} \quad q_{5} \quad q_{4}
\end{aligned}
$$

Computing the Mori chamber decomposition

We compute the Mori chamber decomposition of the Mori dream space X from before with $\mathrm{Cl}(X)=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and

$$
\begin{aligned}
& \operatorname{Cox}(X)=\mathbb{C}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}\right\rangle, \\
& Q=\left[\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\
\frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0}
\end{array}\right] \text {. } \\
& q_{8} \quad q_{5} \quad q_{4}
\end{aligned}
$$

Computing the Mori chamber decomposition

We compute the Mori chamber decomposition of the Mori dream space X from before with $\mathrm{Cl}(X)=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and

$$
\begin{gathered}
\operatorname{Cox}(X)=\mathbb{C}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}\right\rangle \\
Q=\left[\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\
\frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0}
\end{array}\right]
\end{gathered}
$$

Computing the Mori chamber decomposition

We compute the Mori chamber decomposition of the Mori dream space X from before with $\mathrm{Cl}(X)=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and

$$
\begin{gathered}
\operatorname{Cox}(X)=\mathbb{C}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}\right\rangle \\
Q=\left[\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\
\frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0}
\end{array}\right]
\end{gathered}
$$

Computing the Mori chamber decomposition

We compute the Mori chamber decomposition of the Mori dream space X from before with $\mathrm{Cl}(X)=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and

$$
\begin{gathered}
\operatorname{Cox}(X)=\mathbb{C}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}\right\rangle \\
Q=\left[\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\
\frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0}
\end{array}\right]
\end{gathered}
$$

Advanced algorithms

We present these recent, advanced algorithms:
(1) Compute Cox rings of blow ups (with Hausen, Laface)
(2) Compute symmetries of Mori dream spaces (with Hausen, Wolf).

(1) Computing Cox rings of modifications

Cox rings of blow ups

Aim: Given a blow up $X_{2} \rightarrow X_{1}$ of a Mori dream space X_{1}, compute $\operatorname{Cox}\left(X_{2}\right)$ if finitely generated.

Cox rings of blow ups

Aim: Given a blow up $X_{2} \rightarrow X_{1}$ of a Mori dream space X_{1}, compute $\operatorname{Cox}\left(X_{2}\right)$ if finitely generated.

Example

Let X_{2} be the blow up of a general point $p=[1,1,1,1]$ of

$$
X_{1}:=\text { ToricVariety }(\cdots)
$$

What is $\operatorname{Cox}\left(X_{2}\right)$?

Cox rings of blow ups (with Hausen, Laface)

- Blow up along $C \subseteq X_{1}$ irreducible subvariety, $C \subseteq X_{1}^{\text {reg }}$.

Cox rings of blow ups (with Hausen, Laface)

- Blow up along $C \subseteq X_{1}$ irreducible subvariety, $C \subseteq X_{1}^{\text {reg }}$.
- Let $I \subseteq \operatorname{Cox}\left(X_{1}\right)$ be the vanishing ideal of $\widehat{C} \subseteq \bar{X}_{1}$.

Cox rings of blow ups (with Hausen, Laface)

- Blow up along $C \subseteq X_{1}$ irreducible subvariety, $C \subseteq X_{1}^{\text {reg }}$.
- Let $I \subseteq \operatorname{Cox}\left(X_{1}\right)$ be the vanishing ideal of $\widehat{C} \subseteq \bar{X}_{1}$.

Cox rings of blow ups (with Hausen, Laface)

- Blow up along $C \subseteq X_{1}$ irreducible subvariety, $C \subseteq X_{1}^{\text {reg }}$.
- Let $I \subseteq \operatorname{Cox}\left(X_{1}\right)$ be the vanishing ideal of $\widehat{C} \subseteq \bar{X}_{1}$.

Proposition: $\operatorname{Cox}\left(X_{2}\right)$ is isomorphic to the saturated Rees algebra

$$
\bigoplus_{k \in \mathbb{Z}}\left(I^{-k}: J^{\infty}\right) t^{k} \quad \text { where } J \text { is the irrelevant ideal. }
$$

Cox rings of blow ups (with Hausen, Laface)

- Blow up along $C \subseteq X_{1}$ irreducible subvariety, $C \subseteq X_{1}^{\text {reg }}$.
- Let $I \subseteq \operatorname{Cox}\left(X_{1}\right)$ be the vanishing ideal of $\widehat{C} \subseteq \bar{X}_{1}$.

Proposition: $\operatorname{Cox}\left(X_{2}\right)$ is isomorphic to the saturated Rees algebra

$$
\bigoplus_{k \in \mathbb{Z}}\left(I^{-k}: J^{\infty}\right) t^{k} \quad \text { where } J \text { is the irrelevant ideal. }
$$

Algorithm
Input: X_{1} and $I \subseteq \operatorname{Cox}\left(X_{1}\right)$.
Output: $\operatorname{Cox}\left(X_{2}\right)$ if and only if X_{2} is a Mori dream space.
1 for each $n=1,2, \ldots$ do
2 if $\operatorname{Cox}\left(X_{2}\right)$ is generated in the Reescomponents ($\left.I^{-k}: J^{\infty}\right)$ with $-k \leq n$: return an explicit description of $\operatorname{Cox}\left(X_{2}\right)$.

Cox rings of blow ups

Example (continued)

(1) the ideal of $C:=\{p\} \subseteq X_{1}$ is generated by

$$
\begin{aligned}
f_{1} & :=T_{2} T_{3}-T_{1} T_{4}, \\
f_{2} & :=T_{1} T_{2}-T_{3} T_{4}, \\
f_{3} & :=T_{1}^{2}-T_{3}^{2}, \\
f_{4} & :=T_{2}^{2}-T_{4}^{2} \\
& \in \operatorname{Cox}\left(X_{1}\right)=\mathbb{C}\left[T_{1}, \ldots, T_{4}\right] .
\end{aligned}
$$

Cox rings of blow ups

Example (continued)

(1) the ideal of $C:=\{p\} \subseteq X_{1}$ is generated by

$$
\begin{aligned}
f_{1} & :=T_{2} T_{3}-T_{1} T_{4}, \\
f_{2} & :=T_{1} T_{2}-T_{3} T_{4}, \\
f_{3} & :=T_{1}^{2}-T_{3}^{2}, \\
f_{4} & :=T_{2}^{2}-T_{4}^{2} \\
& \in \operatorname{Cox}\left(X_{1}\right)=\mathbb{C}\left[T_{1}, \ldots, T_{4}\right] .
\end{aligned}
$$

Cox rings of blow ups

Example (continued)

(1) the ideal of $C:=\{p\} \subseteq X_{1}$ is generated by

$$
\begin{aligned}
f_{1} & :=T_{2} T_{3}-T_{1} T_{4}, \\
f_{2} & :=T_{1} T_{2}-T_{3} T_{4}, \\
f_{3} & :=T_{1}^{2}-T_{3}^{2} \\
f_{4} & :=T_{2}^{2}-T_{4}^{2} \\
& \in \operatorname{Cox}\left(X_{1}\right)=\mathbb{C}\left[T_{1}, \ldots, T_{4}\right] .
\end{aligned}
$$

Cox rings of blow ups

Example (continued)

(1) the ideal of $C:=\{p\} \subseteq X_{1}$ is generated by

$$
\begin{aligned}
f_{1} & :=T_{2} T_{3}-T_{1} T_{4}, \\
f_{2} & :=T_{1} T_{2}-T_{3} T_{4}, \\
f_{3} & :=T_{1}^{2}-T_{3}^{2}, \\
f_{4} & :=T_{2}^{2}-T_{4}^{2} \\
& \in \operatorname{Cox}\left(X_{1}\right)=\mathbb{C}\left[T_{1}, \ldots, T_{4}\right] .
\end{aligned}
$$

Cox rings of blow ups

Example (continued)

(1) the ideal of $C:=\{p\} \subseteq X_{1}$ is generated by

$$
\begin{aligned}
f_{1} & :=T_{2} T_{3}-T_{1} T_{4}, \\
f_{2} & :=T_{1} T_{2}-T_{3} T_{4}, \\
f_{3} & :=T_{1}^{2}-T_{3}^{2}, \\
f_{4} & :=T_{2}^{2}-T_{4}^{2} \\
& \in \operatorname{Cox}\left(X_{1}\right)=\mathbb{C}\left[T_{1}, \ldots, T_{4}\right] .
\end{aligned}
$$

(2) This means to embed the total coordinate space

$$
\overline{X_{1}}=\mathbb{C}^{4} \xrightarrow{x \mapsto\left(x, f_{1}(x), \ldots, f_{4}(x)\right)} \mathbb{C}^{8}
$$

and we identify $\bar{X}_{1}=\mathbb{C}^{4}$ with $V\left(T_{4+i}-f_{i}\right) \subseteq \mathbb{C}^{8}$.

Cox rings of blow ups

Example (continued)

(3) Toric ambient modification: blow up $\overline{\mathbb{T}_{Z_{1}} \cdot p} \subseteq Z_{1}$:

Cox rings of blow ups

Example (continued)

(3) Toric ambient modification: blow up $\overline{\mathbb{T}_{Z_{1}} \cdot p} \subseteq Z_{1}$:

Cox rings of blow ups

Example (continued)

(3) Toric ambient modification: blow up $\overline{\mathbb{T}_{Z_{1}} \cdot p} \subseteq Z_{1}$:

$$
\begin{aligned}
& \overline{\bar{\pi}^{-1}\left(\overline{X_{1}} \cap\left(\mathbb{C}^{*}\right)^{8}\right)}=\overline{X_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \subseteq \quad Z_{2} \\
& \text { toric } \downarrow \pi \\
& \subseteq \\
& Z_{1} \\
& \mathbb{C}^{9}
\end{aligned}
$$

Cox rings of blow ups

Example (continued)

(4) In terms of Cox rings: Let $I_{1}:=\left\langle T_{4+i}-f_{i}\right\rangle$. We obtain

$$
I_{2} \leq \mathbb{C}\left[T_{1}, \ldots, T_{9}\right] \text { via }
$$

$$
I_{1} \leq \operatorname{Cox}\left(Z_{1}\right)=\mathbb{C}\left[T_{1}, \ldots, T_{8}\right] \longrightarrow \mathbb{C}\left[T_{1}^{ \pm 1}, \ldots, T_{8}^{ \pm 1}\right]
$$

Cox rings of blow ups

Example (continued)

(4) In terms of Cox rings: Let $I_{1}:=\left\langle T_{4+i}-f_{i}\right\rangle$. We obtain

$$
I_{2} \leq \mathbb{C}\left[T_{1}, \ldots, T_{9}\right] \text { via }
$$

$$
\mathbb{C}\left[Y_{i}^{ \pm 1}\right]
$$

Cox rings of blow ups

Example (continued)

(4) In terms of Cox rings: Let $I_{1}:=\left\langle T_{4+i}-f_{i}\right\rangle$. We obtain $I_{2} \leq \mathbb{C}\left[T_{1}, \ldots, T_{9}\right]$ via
$I_{2} \leq \operatorname{Cox}\left(Z_{2}\right)=\mathbb{C}\left[T_{1}, \ldots, T_{9}\right] \longrightarrow \mathbb{C}\left[T_{1}^{ \pm 1}, \ldots, T_{9}^{ \pm 1}\right]$
$\mathbb{C}\left[Y_{i}^{ \pm 1}\right]$
$I_{1} \leq \operatorname{Cox}\left(Z_{1}\right)=\mathbb{C}\left[T_{1}, \ldots, T_{8}\right] \longrightarrow \mathbb{C}\left[T_{1}^{ \pm 1}, \ldots, T_{8}^{ \pm 1}\right]$

Example: blow up of a Mori dream space

Example (continued)

Then

$$
\begin{aligned}
\operatorname{Cox}\left(X_{2}\right)=\mathbb{C}\left[T_{1}, \ldots, T_{9}\right] /\langle & T_{4} T_{5}-T_{1} T_{6}+T_{2} T_{7}, \\
& T_{3} T_{5}-T_{1} T_{7}+T_{2} T_{8}, \\
& T_{2} T_{5}-T_{3} T_{6}+T_{4} T_{7}, \\
& T_{1} T_{5}-T_{3} T_{7}+T_{4} T_{8}, \\
& T_{2} T_{3}-T_{1} T_{4}-T_{5} T_{9}, \\
& T_{1} T_{2}-T_{3} T_{4}-T_{7} T_{9}, \\
& T_{2}^{2}-T_{4}^{2}-T_{6} T_{9}, \\
& T_{1}^{2}-T_{3}^{2}-T_{8} T_{9}, \\
& \left.T_{5}^{2}-T_{7}^{2}+T_{6} T_{8}\right\rangle
\end{aligned}
$$

Example: blow up of a Mori dream space

Example (continued)

Then

$$
\begin{aligned}
\operatorname{Cox}\left(X_{2}\right)=\mathbb{C}\left[T_{1}, \ldots, T_{9}\right] /\langle & T_{4} T_{5}-T_{1} T_{6}+T_{2} T_{7}, \\
& T_{3} T_{5}-T_{1} T_{7}+T_{2} T_{8}, \\
& T_{2} T_{5}-T_{3} T_{6}+T_{4} T_{7}, \\
& T_{1} T_{5}-T_{3} T_{7}+T_{4} T_{8}, \\
& T_{2} T_{3}-T_{1} T_{4}-T_{5} T_{9}, \\
& T_{1} T_{2}-T_{3} T_{4}-T_{7} T_{9}, \\
& T_{2}^{2}-T_{4}^{2}-T_{6} T_{9}, \\
& T_{1}^{2}-T_{3}^{2}-T_{8} T_{9}, \\
& \left.T_{5}^{2}-T_{7}^{2}+T_{6} T_{8}\right\rangle
\end{aligned}
$$

and X_{2} is the Cayley cubic $V(w x y+x y z+y z w+z w x) \subseteq \mathbb{P}_{3}$.

Example: blow up of a Mori dream space

Example (continued)

Then

$$
\operatorname{Cox}\left(X_{2}\right)=\mathbb{C}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{4} T_{5}-T_{1} T_{6}+T_{2} T_{7}, ~ \begin{array}{rl}
\\
& T_{3} T_{5}-T_{1} T_{7}+T_{2} T_{8}, \\
& T_{2} T_{5}-T_{3} T_{6}+T_{4} T_{7}, \\
& T_{1} T_{5}-T_{3} T_{7}+T_{4} T_{8}, \\
& T_{2} T_{3}-T_{1} T_{4}-T_{5} T_{9}, \\
& T_{1} T_{2}-T_{3} T_{4}-T_{7} T_{9}, \\
& T_{2}^{2}-T_{4}^{2}-T_{6} T_{9}, \\
& T_{1}^{2}-T_{3}^{2}-T_{8} T_{9}, \\
& \left.T_{5}^{2}-T_{7}^{2}+T_{6} T_{8}\right\rangle
\end{array}\right.
$$

and X_{2} is the Cayley cubic $V(w x y+x y z+y z w+z w x) \subseteq \mathbb{P}_{3}$.

Implementation

Our algorithms are implemented in the library compcox.lib for the open source algebra system Singular.

Applications

We have computed Cox rings of:
(1) with Hausen, Laface:

- Gorenstein log-terminal del Pezzo surfaces X with $\varrho(X)=1$,
- smooth rational surfaces with $\varrho(X) \leq 6$,
- blow ups of \mathbb{P}_{3}.
(2) with Derenthal, Hausen, Heim, Laface:
- smooth non-toric Fano threefolds with $\varrho(X) \leq 2$,
- cubic surfaces with at most ADE singularities.

3 with Hausen, Laface:

- study of Cox rings of blow ups of $\mathbb{P}(a, b, c)$

Applications

We have computed Cox rings of:
(1) with Hausen, Laface:

- Gorenstein log-terminal del Pezzo surfaces X with $\varrho(X)=1$,
- smooth rational surfaces with $\varrho(X) \leq 6$,
- blow ups of \mathbb{P}_{3}.
(2) with Derenthal, Hausen, Heim, Laface:
- smooth non-toric Fano threefolds with $\varrho(X) \leq 2$,
- cubic surfaces with at most ADE singularities.
(3) with Hausen, Laface:
- study of Cox rings of blow ups of $\mathbb{P}(a, b, c) \rightsquigarrow$ next slide

Application: blow ups of $\mathbb{P}(a, b, c)$

Let $X \rightarrow \mathbb{P}(a, b, c)$ be the blow up at the point $[1,1,1]$.
Theorem (with Hausen, Laface)
Equivalent:
(1) X admits a nontrivial \mathbb{C}^{*}-action.
(2) $a=m b+n c$ with $m, n \in \mathbb{Z}_{\geq 0}$.
(3) $\operatorname{Cox}(X)$ generated by elements of Rees degree ≤ 1.

Application: blow ups of $\mathbb{P}(a, b, c)$

Let $X \rightarrow \mathbb{P}(a, b, c)$ be the blow up at the point $[1,1,1]$.
Theorem (with Hausen, Laface)
Equivalent:
(1) X admits a nontrivial \mathbb{C}^{*}-action.
(2) $a=m b+n c$ with $m, n \in \mathbb{Z}_{\geq 0}$.
(3) $\operatorname{Cox}(X)$ generated by elements of Rees degree ≤ 1.

In this case: X is a Mori dream surface with Cox ring

$$
\begin{gathered}
\mathcal{R}(X)=\mathbb{C}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{3} T_{4}-T_{1}^{c}+T_{2}^{b}\right\rangle, \\
Q=\left[\begin{array}{rrrrr}
b & c & b c & 0 & a \\
0 & 0 & -1 & 1 & -1
\end{array}\right] .
\end{gathered}
$$

Application: blow ups of $\mathbb{P}(a, b, c)$

Let $X \rightarrow \mathbb{P}(a, b, c)$ be the blow up at the point $[1,1,1]$.
Theorem (with Hausen, Laface)
Assume X is not a \mathbb{C}^{*}-surface. Equivalent:
(1) $\operatorname{Cox}(X)$ generated by elements of Rees degree ≤ 2.
(2) After reordering: $2 a=n b+m c$ with $n, m \in \mathbb{Z}_{\geq 0}$ such that $b \geq 3 m$ and $c \geq 3 n$.
In this case, X is a Mori dream surface with Cox ring

$$
\begin{aligned}
\mathcal{R}(X) & =\mathbb{C}\left[x, y, z, t_{1}, \ldots, t_{4}, s\right] /\left(I_{2}: s^{\infty}\right), \\
Q & =\left[\begin{array}{llllllll}
a & b & c & 2 a & \frac{b(c+n)}{2} & \frac{c(b+m)}{2} & b c & 0 \\
0 & 0 & 0 & -1 & -1 & -1 & -2 & 1
\end{array}\right],
\end{aligned}
$$

where ...

Application: blow ups of $\mathbb{P}(a, b, c)$

Theorem (continued) where $I_{2} \subseteq \mathbb{C}\left[x, y, z, t_{1}, \ldots, t_{4}, s\right]$ is generated by

$$
\begin{gathered}
x^{2}-y^{n} z^{m}-t_{1} s, \quad x z^{\frac{b-m}{2}}-y^{\frac{c+n}{2}}-t_{2} s \\
x y^{\frac{c-n}{2}}-z^{\frac{b+m}{2}}-t_{3} s \\
x y^{\frac{c-3 n}{2}} z^{\frac{b-3 m}{2}} t_{1}-y^{\frac{c-n}{2}} t_{2}-z^{\frac{b-m}{2}} t_{3}-t_{4} s \\
y^{\frac{c-3 n}{2}} z^{\frac{b-3 m}{2}} t_{1}^{2}-t_{2} t_{3}-x t_{4} \\
y^{\frac{c-n}{2}} t_{1}-z^{m} t_{2}-x t_{3} \\
z^{\frac{b-m}{2}} t_{1}-x t_{2}-y^{n} t_{3} \\
t_{3}^{2}+y^{\frac{c-3 n}{2}} t_{1} t_{2}-z^{m} t_{4} \\
t_{2}^{2}+z^{\frac{b-3 m}{2}} t_{1} t_{3}-y t_{4}
\end{gathered}
$$

(2) Computing symmetries of graded algebras and MDSs

Symmetries of graded algebras

Setting: Consider an affine, integral \mathbb{C}-algebra

$$
R=\mathbb{C}\left[T_{1}, \ldots, T_{r}\right] / I=\bigoplus_{w \in K} R_{w}
$$

graded pointedly by a finitely generated abelian group K,

Symmetries of graded algebras

Setting: Consider an affine, integral \mathbb{C}-algebra

$$
R=\mathbb{C}\left[T_{1}, \ldots, T_{r}\right] / I=\bigoplus_{w \in K} R_{w}
$$

graded pointedly by a finitely generated abelian group K, i.e., $R_{0}=\mathbb{C}$ and

$$
\text { cone }\left(\operatorname{deg} T_{1}, \ldots, \operatorname{deg} T_{r}\right) \subseteq K \otimes \mathbb{Q} \quad \text { pointed }
$$

Symmetries of graded algebras

Setting: Consider an affine, integral \mathbb{C}-algebra

$$
R=\mathbb{C}\left[T_{1}, \ldots, T_{r}\right] / I=\bigoplus_{w \in K} R_{w}
$$

graded pointedly by a finitely generated abelian group K, i.e., $R_{0}=\mathbb{C}$ and

$$
\text { cone }\left(\operatorname{deg} T_{1}, \ldots, \operatorname{deg} T_{r}\right) \subseteq K \otimes \mathbb{Q} \quad \text { pointed } .
$$

Symmetries of graded algebras

Example (continued)

The \mathbb{C}-algebra $R:=\mathbb{C}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}+T_{3}^{2}+T_{4}^{2}\right\rangle$ is pointedly $K:=\mathbb{Z}^{2} \oplus \mathbb{Z} / 2 \mathbb{Z}$-graded via

Symmetries of graded algebras

Example (continued)

The \mathbb{C}-algebra $R:=\mathbb{C}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}+T_{3}^{2}+T_{4}^{2}\right\rangle$ is pointedly $K:=\mathbb{Z}^{2} \oplus \mathbb{Z} / 2 \mathbb{Z}$-graded via

$$
\begin{aligned}
{\left[q_{1}, \ldots, q_{5}\right] } & :=\left[\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
\frac{1}{1} & -\frac{1}{1} & \frac{0}{1} & 0 & \frac{1}{0} \\
\hline
\end{array}\right], \\
q_{i} & :=\operatorname{deg}\left(T_{i}\right) \in K .
\end{aligned}
$$

Symmetries of graded algebras

The automorphism group $\operatorname{Aut}_{K}(R)$ of a K-graded algebra R consists of all pairs (φ, ψ) with

- $\varphi: R \rightarrow R$ automorphism of \mathbb{C}-algebras,
- $\psi: K \rightarrow K$ automorphism of groups,
- $\varphi\left(R_{w}\right)=R_{\psi(w)}$ for all $w \in K$.

Symmetries of graded algebras

The automorphism group $\operatorname{Aut}_{K}(R)$ of a K-graded algebra R consists of all pairs (φ, ψ) with

- $\varphi: R \rightarrow R$ automorphism of \mathbb{C}-algebras,
- $\psi: K \rightarrow K$ automorphism of groups,
- $\varphi\left(R_{w}\right)=R_{\psi(w)}$ for all $w \in K$.

Aim

Compute $\operatorname{Aut}_{K}(R)$ as $V(J) \subseteq \mathrm{GL}(n)$ for some n.

Symmetries of graded algebras (with Hausen, Wolf)

Proposition

(1) Write $G:=\operatorname{Aut}_{K}\left(\mathbb{C}\left[T_{1}, \ldots, T_{r}\right]\right)$. There is an isomorphism

$$
\operatorname{Aut}_{K}(R) \cong \operatorname{Stab}_{\prime}(G) / \underbrace{G_{0}}_{\text {usually }=1}
$$

Symmetries of graded algebras (with Hausen, Wolf)

Proposition

(1) Write $G:=\operatorname{Aut}_{K}\left(\mathbb{C}\left[T_{1}, \ldots, T_{r}\right]\right)$. There is an isomorphism

$$
\operatorname{Aut}_{K}(R) \cong \operatorname{Stab}_{I}(G) / \underbrace{G_{0}}_{\text {usually }=1}
$$

(2) For $(\varphi, \psi) \in G$ are equivalent:

Symmetries of graded algebras (with Hausen, Wolf)

Proposition

(1) Write $G:=\operatorname{Aut}_{K}\left(\mathbb{C}\left[T_{1}, \ldots, T_{r}\right]\right)$. There is an isomorphism

$$
\operatorname{Aut}_{K}(R) \cong \operatorname{Stab}_{I}(G) / \underbrace{G_{0}}_{\text {usually }=1}
$$

(2) For $(\varphi, \psi) \in G$ are equivalent:

- $(\varphi, \psi) \in \operatorname{Stab}_{\prime}(G)$,

Symmetries of graded algebras (with Hausen, Wolf)

Proposition

(1) Write $G:=\operatorname{Aut}_{K}\left(\mathbb{C}\left[T_{1}, \ldots, T_{r}\right]\right)$. There is an isomorphism

$$
\operatorname{Aut}_{K}(R) \cong \operatorname{Stab}_{I}(G) / \underbrace{G_{0}}_{\text {usually }=1}
$$

(2) For $(\varphi, \psi) \in G$ are equivalent:

- $(\varphi, \psi) \in \operatorname{Stab}_{\prime}(G)$,
- $\varphi\left(I_{\operatorname{deg}\left(f_{i}\right)}\right)=I_{\psi\left(\operatorname{deg}\left(f_{i}\right)\right)}$ for all i.

Symmetries of graded algebras (with Hausen, Wolf)

Proposition

(1) Write $G:=\operatorname{Aut}_{K}\left(\mathbb{C}\left[T_{1}, \ldots, T_{r}\right]\right)$. There is an isomorphism

$$
\operatorname{Aut}_{K}(R) \cong \operatorname{Stab}_{\prime}(G) / \underbrace{G_{0}}
$$

$$
\text { not a finite problem = } 1
$$

(2) For $(\varphi, \psi) \in G$ are equivalent:

- $(\varphi, \psi) \in \operatorname{Stab}_{l}(G)$,
- $\varphi\left(I_{\operatorname{deg}\left(f_{i}\right)}\right)=I_{\psi\left(\operatorname{deg}\left(f_{i}\right)\right)}$ for all i.

Symmetries of graded algebras (with Hausen, Wolf)

Proposition

(1) Write $G:=\operatorname{Aut}_{K}\left(\mathbb{C}\left[T_{1}, \ldots, T_{r}\right]\right)$. There is an isomorphism

$$
\operatorname{Aut}_{K}(R) \cong \operatorname{Stab}_{I}(G) / \underbrace{G_{0}}
$$

$$
\text { not a finite problem }=1
$$

(2) For $(\varphi, \psi) \in G$ are equivalent:

- $(\varphi, \psi) \in \operatorname{Stab}_{\boldsymbol{\prime}}(G)$,
finite problem

Symmetries of graded algebras (with Hausen, Wolf)

Algorithm (compute $\operatorname{Aut}_{K}(R)$)
(1) Represent $\operatorname{Aut}_{K}\left(\mathbb{C}\left[T_{1}, \ldots, T_{r}\right]\right)$ as a subgroup $G \subseteq G L(n, \mathbb{C})$.
(2) For $(\varphi, \psi) \in G$, the condition $(\varphi, \psi) \cdot I_{q_{i}}=I_{\psi\left(q_{i}\right)}$ yields $J \subseteq \mathcal{O}(G)$ with

$$
\underbrace{\operatorname{Stab}_{\prime}(G)}_{\operatorname{Aut}_{K}(R)}=V(J) \subseteq G .
$$

Task: compute lattice points

Symmetries of graded algebras (with Hausen, Wolf)

Algorithm (compute $\operatorname{Aut}_{K}(R)$)
(1) Represent $\operatorname{Aut}_{K}\left(\mathbb{C}\left[T_{1}, \ldots, T_{r}\right]\right)$ as a subgroup $G \subseteq G L(n, \mathbb{C})$.
(2) For $(\varphi, \psi) \in G$, the condition $(\varphi, \psi) \cdot I_{q_{i}}=I_{\psi\left(q_{i}\right)}$ yields $J \subseteq \mathcal{O}(G)$ with

$$
\underbrace{\operatorname{Stab}_{\prime}(G)}_{\operatorname{Aut}_{K}(R)}=V(J) \subseteq G .
$$

Task: compute lattice points

Symmetries of graded algebras (with Hausen, Wolf)

Algorithm (compute $\mathrm{Aut}_{K}(R)$)
(1) Represent $\operatorname{Aut}_{K}\left(\mathbb{C}\left[T_{1}, \ldots, T_{r}\right]\right)$ as a subgroup $G \subseteq G L(n, \mathbb{C})$.
(2) For $(\varphi, \psi) \in G$, the condition $(\varphi, \psi) \cdot I_{q_{i}}=I_{\psi\left(q_{i}\right)}$ yields $J \subseteq \mathcal{O}(G)$ with

$$
\underbrace{\operatorname{Stab}_{I}(G)}_{\operatorname{Aut}_{K}(R)}=V(J) \subseteq G .
$$

Task: track permutation of the q_{i}

Symmetries of graded algebras (with Hausen, Wolf)

Algorithm (compute $\mathrm{Aut}_{K}(R)$)
(1) Represent $\operatorname{Aut}_{K}\left(\mathbb{C}\left[T_{1}, \ldots, T_{r}\right]\right)$ as a subgroup $G \subseteq G L(n, \mathbb{C})$.
(2) For $(\varphi, \psi) \in G$, the condition $(\varphi, \psi) \cdot I_{q_{i}}=I_{\psi\left(q_{i}\right)}$ yields $J \subseteq \mathcal{O}(G)$ with

$$
\underbrace{\operatorname{Stab}_{I}(G)}_{\operatorname{Aut}_{K}(R)}=V(J) \subseteq G .
$$

Task: track permutation of the q_{i}

Symmetries of graded algebras (with Hausen, Wolf)

Algorithm (compute $\mathrm{Aut}_{K}(R)$)
(1) Represent $\operatorname{Aut}_{K}\left(\mathbb{C}\left[T_{1}, \ldots, T_{r}\right]\right)$ as a subgroup $G \subseteq G L(n, \mathbb{C})$.
(2) For $(\varphi, \psi) \in G$, the condition $(\varphi, \psi) \cdot I_{q_{i}}=I_{\psi\left(q_{i}\right)}$ yields $J \subseteq \mathcal{O}(G)$ with

$$
\underbrace{\operatorname{Stab}_{I}(G)}_{\operatorname{Aut}_{K}(R)}=V(J) \subseteq G .
$$

Task: track permutation of the q_{i}

Symmetries of graded algebras (with Hausen, Wolf)

Algorithm (compute $\mathrm{Aut}_{K}(R)$)
(1) Represent $\operatorname{Aut}_{K}\left(\mathbb{C}\left[T_{1}, \ldots, T_{r}\right]\right)$ as a subgroup $G \subseteq G L(n, \mathbb{C})$.
(2) For $(\varphi, \psi) \in G$, the condition $(\varphi, \psi) \cdot I_{q_{i}}=I_{\psi\left(q_{i}\right)}$ yields $J \subseteq \mathcal{O}(G)$ with

$$
\underbrace{\operatorname{Stab}_{I}(G)}_{\operatorname{Aut}_{K}(R)}=V(J) \subseteq G .
$$

Task: track permutation of the q_{i}

Graded algebras: symmetries

Example (continued)

The group $\operatorname{Aut}_{K}(R)$ is isomorphic to the following subgroup of GL(5, C):

$$
\begin{array}{r}
\left\{\left[\begin{array}{rrrrr}
r_{1} & Y_{7} & 0 & 0 & 0 \\
0 & Y_{1} & 0 & 0 \\
0 & 0 & r_{13} & 0 & 0 \\
0 & 0 & r_{19} & 0 \\
0 & 0 & 0 & 0 & r_{25}
\end{array}\right] \in \operatorname{GL}(5, \mathbb{C}) ; \begin{array}{l}
Y_{13}^{2}=Y_{19}^{2}, \\
Y_{1} Y_{7}=Y_{13}^{2}
\end{array}\right\} \\
\left.\cup\left\{\begin{array}{rrrrr}
r_{1} & 0 & 0 & 0 & 0 \\
0 & r_{7} & 0 & 0 & 0 \\
0 & 0 & r_{14} & 0 \\
0 & 0 & r_{18} & 0 & 0 \\
0 & 0 & 0 & 0 & r_{25}
\end{array}\right] \in \operatorname{GL}(5, \mathbb{C}) ; \begin{array}{l}
Y_{14}^{2}=Y_{18}^{2}, \\
Y_{1} Y_{7}=Y_{18}^{2}
\end{array}\right\}
\end{array}
$$

Graded algebras: symmetries

Example (continued)

The group $\operatorname{Aut}_{K}(R)$ is isomorphic to the following subgroup of GL(5, C):

$$
\begin{array}{r}
\left\{\left[\begin{array}{rrrrr}
r_{1} & Y_{7} & 0 & 0 & 0 \\
0 & Y_{7} & 0 & 0 \\
0 & 0 & r_{13} & 0 & 0 \\
0 & 0 & r_{19} & 0 \\
0 & 0 & 0 & 0 & r_{25}
\end{array}\right] \in \operatorname{GL}(5, \mathbb{C}) ; \begin{array}{l}
Y_{13}^{2}=Y_{19}^{2}, \\
Y_{1} Y_{7}=Y_{13}^{2}
\end{array}\right\} \\
\left.\cup\left\{\begin{array}{rrrrr}
r_{1} & 0 & 0 & 0 & 0 \\
0 & r_{7} & 0 & 0 & 0 \\
0 & 0 & r_{14} & 0 \\
0 & 0 & r_{18} & 0 & 0 \\
0 & 0 & 0 & 0 & r_{25}
\end{array}\right] \in \operatorname{GL}(5, \mathbb{C}) ; \begin{array}{l}
Y_{14}^{2}=Y_{18}^{2}, \\
Y_{1} Y_{7}=Y_{18}^{2}
\end{array}\right\}
\end{array}
$$

In particular:

$$
\operatorname{dim}\left(\operatorname{Aut}_{K}(R)\right)=3, \quad \sharp \text { components }=4
$$

Symmetries of Mori dream spaces

Let $X=\widehat{X} / / H$ be a Mori dream space. Write

$$
R=\operatorname{Cox}(X), \quad \bar{X}=\operatorname{Spec}(R), \quad K=\operatorname{Cl}(X)
$$

Symmetries of Mori dream spaces

Let $X=\widehat{X} / / H$ be a Mori dream space. Write

$$
R=\operatorname{Cox}(X), \quad \bar{X}=\operatorname{Spec}(R), \quad K=\operatorname{Cl}(X)
$$

Theorem (Arzhantsev/Hausen/Huggenberger/Liendo)
Exact sequence of linear algebraic groups:

$$
\begin{gathered}
\operatorname{Aut}_{K}(R) \\
\operatorname{Aut}_{H}(\bar{X}) \\
\cup \| \\
1 \longrightarrow H \longrightarrow \operatorname{Aut}_{H}(\widehat{X}) \longrightarrow \operatorname{Aut}(X) \longrightarrow 1
\end{gathered}
$$

Symmetries of Mori dream spaces

Let $X=\widehat{X} / / H$ be a Mori dream space. Write

$$
R=\operatorname{Cox}(X), \quad \bar{X}=\operatorname{Spec}(R), \quad K=\operatorname{Cl}(X)
$$

Theorem (Arzhantsev/Hausen/Huggenberger/Liendo)
Exact sequence of linear algebraic groups:

$$
\begin{aligned}
& \operatorname{Aut}_{K}(R) \rightsquigarrow \text { as before } \\
& \text { Aut }_{H}(\bar{X}) \\
& \text { UI } \\
& 1 \longrightarrow H \longrightarrow \operatorname{Aut}_{H}(\widehat{X}) \longrightarrow \operatorname{Aut}(X) \longrightarrow 1
\end{aligned}
$$

Symmetries of Mori dream spaces

Let $X=\widehat{X} / / H$ be a Mori dream space. Write

$$
R=\operatorname{Cox}(X), \quad \bar{X}=\operatorname{Spec}(R), \quad K=\operatorname{Cl}(X) .
$$

Theorem (Arzhantsev/Hausen/Huggenberger/Liendo)
Exact sequence of linear algebraic groups:

$$
\begin{aligned}
& \frac{\operatorname{Aut}_{K}(R)}{2 l} \rightsquigarrow \text { as before } \\
& \operatorname{Aut}_{H}(\bar{X}) \\
& \text { UI } \\
& 1 \longrightarrow H \longrightarrow \operatorname{Aut}_{H}(\hat{X}) \longrightarrow \operatorname{Aut}(X) \longrightarrow 1 \\
& \rightsquigarrow \text { fix } \lambda(w)
\end{aligned}
$$

Symmetries of Mori dream spaces

Let $X=\widehat{X} / / H$ be a Mori dream space. Write

$$
R=\operatorname{Cox}(X), \quad \bar{X}=\operatorname{Spec}(R), \quad K=\operatorname{Cl}(X) .
$$

Theorem (Arzhantsev/Hausen/Huggenberger/Liendo)
Exact sequence of linear algebraic groups:

Applications and software

Implemented in autgradalg.lib for Singular.

Applications:

- with Hausen, Wolf:
- $\operatorname{Aut}(X)$ for singular cubic surfaces with at most ADE singularities,
- compute symmetries of homogeneous ideals.
- Preprint:
- Certain non-toric terminal Fano threefold of Picard number one with an effective two-torus action.

